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Three-state model for cooperative desorption on a one-dimensional lattice

F. Vikas, F. Baras, and G. Nicolis
Center for Nonlinear Phenomena and Complex Systems, Universite´ Libre de Bruxelles, Campus Plaine, Caixa Postal 231,

B-1050 Brussels, Belgium
~Received 30 May 2002; published 27 September 2002!

We develop a master equation approach to the dynamics of immobile reactants on a one-dimensional lattice,
in the presence of two different species undergoing cooperative desorption. A common feature of all the
schemes studied is the strong dependence of the final coverage on the initial conditions, associated with the
lack of ergodicity of the invariant state. Our approach leads to full agreement with Monte Carlo simulations,
both asymptotically and transiently.
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I. INTRODUCTION

Recently, there has been a great deal of interest in p
nomena that take place on sets of low dimensionality. V
diverse systems, such as interacting spins, random wa
percolation clusters, reactive schemes, and so on, turn o
present here a radically different macroscopic behavior t
the one predicted by the mean-field~MF! approach. The ori-
gin of the deviations has been successfully identified
appears to depend on both the characteristics of the sup
and the nature of the underlying dynamics@1–5#.

Most of the literature on the effects of dimensionality
the dynamical behavior of reactive systems focuses
diffusion-controlled reactions. As the spatial dimension d
creases, so does the reactants’ mobility, resulting in less
ficient transport and a slowing down of the reaction. T
effect can be enhanced if the support is of discrete nature
relevant parameter being then the coordination number of
lattice, rather than its dimension.

In a series of papers@6–10#, the present authors hav
considered the opposite limit where the reactants remain
mobile within the time scale of interest, thereby focusing
the reaction dynamics and its role in the global behavior
various types of kinetics. In all the cases studied the emb
ding in a lattice, with hard core exclusion and short ran
reactive interactions, causes a quantitative or qualita
change from MF behavior. In particular, in the dynamics
irreversible reactions on a one-dimensional lattice,A1A
→A1S and A1A→S1S, referred to cooperative partia
and full desorption~or, more popularly, coagulation and a
nihilation! @10#, some particles are left on the lattice inde
nitely, resulting in a nonzero coverage of the lattice in t
asymptotic time limit, whereas the MF equations predic
hyperbolic decrease of the coverage. The time evolu
equations for clusters of particles has been derived from
Glauber-type master equation@11#, and their solutions lead to
analytic expressions for the lattice occupation that are in
agreement with the results of numerical simulations. N
that the second reaction, whose solution was originally gi
by Flory @12#, is equivalent to a random sequential adso
tion process~RSA!. These systems have since then be
given considerable attention, as can be seen in Ref.@13#.

In the present paper, we take the problem one step fur
by considering reactive schemes involving two different s
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cies. A site can now be found in three different states,
third one being the state of vacancy. Such problems h
attracted attention in the recent literature@14–16#, the usual
approach being to map them to a quantum mechanical
malism. Here we develop an alternative approach based
Glauber-type master equation.

The particular systems analyzed here are still associ
with cooperative desorption, in two different ways.

Scheme~1a!:

A1A→
,1

A1P, P→
k2

S. ~1a!

Scheme~1b!:

A1A→
,1

P1P, P→
k2

S. ~1b!

We refer to these schemes as stepped desorption. They a
extension of those studied previously@10#. The difference is
that, here the reaction betweenA particles produces a produc
P that desorbs spontaneously, leaving an empty siteS.

Scheme~2!:

A1B→
k1

S1S. ~2!

This two-species desorption is known to present very in
esting features when diffusion is allowed. After some tim
reactant segregation occurs, slowing down the reaction
only takes place at the interfaces. The present work will s
further light on these phenomena.

In Sec. II, we describe the MF behavior for the vario
schemes, which turns out to be nontrivial for the stepp
desorption case. Section III is devoted to the derivation of
extended Glauber type master equation. This equatio
used in Secs. IV and V, where a solution for the coverage
the lattice in the case of, respectively, stepped desorption
two-species desorption is computed and found to be in
agreement with numerical simulations, both asymptotica
and transiently. Finally, our conclusions are summarized
Sec. VI.
©2002 The American Physical Society33-1
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II. MEAN-FIELD DESCRIPTION

In this section we summarize the mean-field results
the two models introduced above. We first consider sche
~1a!. With a proper dimensionalization, steps~1a! are de-
scribed by the following rate equations:

da~t!

dt
52a~t!2, e

dp~t!

dt
5ea~t!22p~t!,

e
ds~t!

dt
5p~t!,

wheret5k1t, e5k1 /k2, andk15,1A(0). Theexact solu-
tion can be put in the form

a~t!5
1

t1
1

a~0!

,

p~t!5@a~0!1p~0!#e2t/e2
1

t1
1

a~0!

1
1

e
e2(1/e)$t1[1/a(0)]%H EiF1

e S t1
1

a~0! D G
2Ei S 1

ea~0! D J ,

s~t!5s~0!1
1

eE0

t

p~t8!dt8.

As we can see, it involves the exponential integral funct
that does not have an approximate analytical form in
positive domain. To compute a solution fors(t) in a more
explicit form, we consider the casee!1, or in other words,
a desorption reaction much faster than the alteration reac
and apply singular perturbation theory.

The starting point is to seek for a solution in the form
a power series ofe,

p~t!5(
r 50

`

pr~t!e r . ~3!

Tihonov’s theorem asserts that such a solution exists. The
appears that the actual solution is a linear combination
three such series that will always be a uniform approxim
tion of the true solution inside and outside the system
boundary layer. More details can be found in Secs. 39 and
of Ref. @17#. Keeping terms up to ordere2, one finds

a~t!5
1

t1
1

a~0!

,

03613
r
e

n
e
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f
-
s
0

p~t!5p~0!e2t/e1eF 1

S t1
1

a~0! D
2 2a~0!2e2t/eG

1e2F 2

S t1
1

a~0! D
3 22a~0!3e2t/eG1O~e3!, ~4!

s~t!5s~0!1p~0!~e2t/e21!

1eF a~0!2e2t/e2
1

S t1
1

a~0! D
2G1O~e2!.

Note that the solution fors(t) is directly integrated from
p(t) equation, which explains its lower order of approxim
tion. A similar derivation for scheme~1b! leads to the ap-
proximate solution of ordere2,

a~t!5
1

2t1
1

a~0!

,

p~t!5p~0!e2t/e12eF 1

S 2t1
1

a~0! D
2 2a~0!2e2t/eG

12e2F 1

S 2t1
1

a~0! D
3 2a~0!3e2t/eG1O~e3!,

~5!

s~t!5s~0!1p~0!~e2t/e21!

12eF a~0!2e2t/e2
1

S 2t1
1

a~0! D
2G1O~e2!.

Figure 1 shows the convergence of these solutions
wards the exact one, for both the schemes.

For scheme~2!, we do not meet such difficulties and th
solution is found to decrease ast21.

III. MASTER EQUATION FOR A THREE-STATE MODEL

In this section we derive a master equation for a gene
system where the processes involved affect at most two s
For the sake of simplicity, mainly to prevent any overcou
ing, we assume that a two-site event can happen only
tween a sitei and its right-hand neighbori 11. Since we
work on a ring, this does not entail any loss of general
This kind of formalism was used previously for two-sta
problems and proved to be suitable for the study of su
systems@10#. Its generalization to three-state models pr
ceeds as follows.

We consider a set ofL spinlike variabless561,0 ar-
3-2
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FIG. 1. MF behavior forp(t) for the ~a! partial and~b! full stepped desorption, with initial conditionsa(0)51, p(0)50, s(0)50, for
e50.1. The approximate solutions of orderse ande2 clearly converge in both the schemes towards the exact solution.
b
r

he
the

sum
ranged on the sitesj of a one-dimensional ring. Starting from
some arbitrary initial state, the evolution in time of the pro
ability distribution P($s1%;t) is described by the maste
equation

dP~$s1%;t !

dt
52(

j
(
q52

7

wj~$s
1%→$sq%,t !P~$s1%;t !

1(
j

(
q52

7

wj~$s
q%→$s1%,t !P~$sq%;t !,

~6!

where

$s1%5~s1 , . . . ,s j ,s j 11 , . . . ,sL!,

$s2%5~s1 , . . . ,s j11,s j 11 , . . . ,sL!,

$s3%5~s1 , . . . ,s j12,s j 11 , . . . ,sL!, ~7!
ize
e
th

t-

d
ie
-

03613
-
$s4%5~s1 , . . . ,s j11,s j 1111, . . . ,sL!,

$s5%5~s1 , . . . ,s j12,s j 1112, . . . ,sL!,

$s6%5~s1 , . . . ,s j11,s j 1112, . . . ,sL!,

$s7%5~s1 , . . . ,s j12,s j 1111, . . . ,sL!.

The addition on the spin variables in the definition of t
different states is to be understood as an operation in
cyclic group (21,0,1). wj ($s

p%→$sq%,t) denotes the tran-
sition probability from a state$sp% to a state$sq% at time t.
Its value is then either zero or positive.

Consider now thats i 11 to s i 1, are given a certain value
s* , not necessarily the same for each site, and let us
over all the other variables. The result
P,~ t !5 (
s1561,0

••• (
s i561,0

(
s i 1,11561,0

••• (
sN561,0

P„~s1 , . . . ,s i 11* , . . . ,s i 1,* , . . . ,sN!;t… ~8!
ive
ar-
is the probability of existence of a particular cluster of s
,. If we assume translational invariance, this probability b
comes the coverage of the chain by such clusters. In
particular case,51, we get the fraction of sites of the la
tice, which are in a certain state.

Applying these operations to the master equation, one
rives a hierarchy of evolution equations for the probabilit
P,(t). In the following sections, we will construct the ex
-
e

e-
s

plicit form of wj appropriate for each scheme and then der
the corresponding hierarchy of equations for clusters of p
ticles.

IV. SCHEME „1…: STEPPED DESORPTION

The reaction betweenA particles is similar to the two-
species systems studied previously@10#, and so there should
3-3
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be no difference between the evolution equations for clu
of A particles in two- and three-species models. This allo
one to test models~6! and~7! on a well-known case. As ther
is no proximity condition on the desorption ofP particles,
the coverage of the lattice inP particles converges toward
the MF behavior. On the other hand,P particles appear from
reactions betweenA particles, whose behavior is not M
like. The transient occupation of the lattice byP particles is
thus different from that predicted by the MF equations,

FIG. 2. Transient coverage of the lattice byP particles in
scheme~1a! with e50.1. The difference between MF behavior a
numerical simulations is due to the proximity conditions impos
on reactions betweenA particles that produce theP particles. In the
asymptotic time limit, there are noP particles left on the lattice.
e
-
s
l-
o

rm

03613
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shown in Fig. 2. The main question is then whether o
model will reproduce this transient behavior.

A. Partial desorption

We associate speciesA, P, and S to the spin statess
50,1, and21, respectively. The two events are thus rep
sented by the transition probabilitieswj ($s

1%→$s2%,t) and
wj ($s

3%→$s1%,t) in the notation of Eqs.~7!, all the other
terms of the master equation being zero. The master equa
~6! can thus be reduced to

dP~$s1%;t !

dt
52(

j
wj~$s

1%→$s2%,t !P~$s1%;t !

1(
j

wj~$s
3%→$s1%,t !P~$s3%;t !. ~9!

The transition probabilities take the form

wj
125wj

315
k1

2
~s j

221!~s j 11
2 21!1

k2

2
s j~s j11!,

~10!

where k1 , k2 are the rate constants associated to the
steps ~1a! and we introduced the abbreviated notati
wj ($s

p%→$sq%,t)5wj
pq . From now on, we will absorb the

rate k1 in the dimensionless time variablet5k1t and we
define the ratio of the two rates ase5k1 /k2.

1. Dynamics of clusters ofA particles

We are interested in the probability that, contiguous sites
are occupied byA particles:

d

P,
A~t!5 (

s1561,0
••• (

s i561,0
(

s i 1,11561,0
••• (

sN561,0
P„~s1 , . . . ,s i 1150, . . . ,s i 1,50, . . . ,sN!;t….
of

Performing this operation on Eq.~9!, one has

dP,
A~t!

dt
5 (

j Þ i 11, . . . ,i 1,
(

s j 561,0

2wj~$s
1%→$s2%,t!P~$s1%;t!

1wj~$s
3%→$s1%,t!P~$s3%;t!. ~11!

In the second term of this equation, performing the chang
variabless35s1 for the initial state of the transition prob
ability implies thats15s2 in the final state, changing thi
term towj ($s

1%→$s2%,t)P($s1%;t). This causes a cance
lation of the two terms for allj, except for those belonging t
the subsetj 5 i 11, . . . ,i 1,. Furthermore, sinces j50 for
this subset, the second term of Eq.~11! is 0. Let us also note
that, in the remaining evolution equation, the second te
of

vanishes becausewj (s12)50 if s50. We will now evalu-
ate the nonvanishing contributions for the relevant values
j:

~1! For j 5 i 11, the contribution of the site reads

C152~s i 11
2 21!~s i 12

2 21!

3PR~s i 1150,s i 1250, . . . ,s i 1,50!

52P,
A~t!, ~12!

where we used the notation

PR~sa , . . . ,sa1b!5 (
j 561,0;j Þa,a11, . . . ,a1b

P~$sp%!.

~2! For j 5 i 1,, the contribution of the site reads
3-4
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C252 (
s i 1,11561,0

~s i 1,
2 21!~s i 1,11

2 21!

3PR~s i 1150, . . . ,s i 1,50,s i 1,11!

5 (
s i 1,11561,0

~s i 1,11
2 21!

FIG. 3. Dependence of the global asymptotic coverage inA
particles on the initial condition. The solid line corresponds to
partial desorption and the slashed one to the full desorption.
bullets and diamonds represent the numerical values given by
croscopic simulations of the partial and full desorptions, resp
tively.
e

r
u

03613
PR~s i 1150, . . . ,s i 1,50,s i 1,11!

52PR~s i 1150, . . . ,s i 1,1150!52P,11
A ~t!.

~13!

For the full subset, we have one contribution of the ty
C2 corresponding to the reaction between sitesi 1, and i
1,11 and,21 contributions of the typeC1 corresponding
to reaction between sitesi 11 and i 12, i 12 and i
13, . . . ,i 1,21 and i 1,. Finally, the evolution equation
~11! reduces to

dP,
A~t!

dt
52@~,21!P,

A~t!1P,11
A ~t!#. ~14!

This equation is similiar to the one found for direct part
desorption@10# and which was solved by Majumdar an
Privman@18#. For ,51, the probability represents the cov
erage of the lattice byA particles and its solution

P,
A~t!5~P1

A!,~0!exp@2~,21!t2P1
A~0!~12e2t!#

~15!

fits very well the Monte Carlo simulations, as can be seen
Fig. 3.

2. Dynamics of clusters ofP particles

We defineP,
P as the probability that, contiguous sites are

occupied by homologousP particles,

e
e
i-
-

P,
P~ t !5 (

s1561,0
••• (

s i561,0
(

s i 1,11561,0
••• (

sN561,0
P„~s1 , . . . ,s i 1151, . . . ,s i 1,51, . . . ,sN!;t….
e
e

We will restrict ourselves in the quantityP1
P , the coverage of

the lattice inP particles. From the previous equation, w
obtain for the evolution ofP1

P ,

dP1
P~t!

dt
5 (

s i 12561,0
~s i 11

2 21!~s i 12
2 21!P~s i 1150,s i 12!

2
1

2e
s i 11~s i 1111!P~s i 1151!,

dP1
P~t!

dt
5P2

A~t!2
1

e
P1

P~t!. ~16!

Since the form ofP2
A(t) is known, the evolution equation fo

this quantity reduces to an inhomogeneous differential eq
tion that can be solved. The result is
a-

P1
P~t!5

@P1
A~0!#a12

a!
e2(t/e)2P1

A(0)

3FeP1
A(0)e2t

(
n51

a

~n21!!
ent

@P1
A~0!#n

2eP1
A(0)

3 (
n51

a
~n21!!

@P1
A~0!#n

Ei„P1
A~0!e2t

…1Ei„P1
A~0!…G

1P1
P~0!e2t/e, ~17!

where a5(12e)/e. We compare this expression with th
results of simulations in Fig. 4. To achieve this result, w
used the following relation:
3-5
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FIG. 4. Transient coverage byP particles for scheme~1a!, with e50.1. ~a! shows numerical results while the analytical result given
Eq. ~17! is plotted in~b!.
s

i

te

t
ta

in

are
E exp~at1be2t!dt5
ba

a! Fexp~be2t! (
n51

a

~n21!!
ent

bn

2Ei~be2t!G ,

provideda is a positive integer. Although this limitation i
nonphysical, there is a wide range of values fork1 and k2
which satisfy this condition. It does not therefore induce
real loss of generality for our solution.

B. Full desorption

This scheme is similar to the previous one with the d
ference that twoA particles transform into productsP at the
same time. TheP particles desorb as before. The mas
equation reduces now to

dP~$s1%;t !

dt
52(

j
wj~$s

1%→$s4%,t !P~$s1%;t !

1(
j

wj~$s
5%→$s1%,t !P~$s5%;t !,

~18!

and the transition probabilities take the form

wj
145wj

515k1~s j
221!~s j 11

2 21!1
k2

2
s j~s j11!. ~19!

The computations are very similar to those presented for
partial desorption so we just present the results. We ob
for the evolution of a cluster ofA particles:

dP,
A~t!

dt
52@~,21!P,

A~t!12P,11
A ~t!#, ~20!

the solution of this equation being
0361
a

f-

r

he
in

P,
A~t!5~P1

A!,~0!exp@2~,21!t22P1~0!~12e2t!#.
~21!

The accuracy of the prediction is quite good, as seen
Fig. 3. For the coverage of the lattice byP particles, we get
the following evolution equation:

dP1
P~t!

dt
52P2

A~t!2
1

e
P1

P~t!, ~22!

whose solution is

P1
P~t!5

@2P1
A~0!#a12

2a!
e2(t/e)22P1

A(0)

3Fe2P1
A(0)e2t

(
n51

a

~n21!!
ent

@2P1
A~0!#n

2e2P1
A(0)

3 (
n51

a
~n21!!

@2P1
A~0!#n

Ei„2P1
A~0!e2t

…1Ei„2P1
A~0!…G

1P1
P~0!e2t/e, ~23!

wherea5(12e)/e.

V. SCHEME „2…

We now turn to the reactionA1B→
k1

S1S. We assign the
values j51 to a site occupied by anA particle,s j521 to a
site occupied by aB particle, ands j50 to a free siteS. As
previously, some of the terms of the master equation
zero, leading to
33-6
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dP~$s1%;t !

dt
52(

j
@wj~$s

1%→$s6%,t !

1wj~$s
1%→$s7%,t !#P~$s1%;t !

1(
j

wj~$s
6%→$s1%,t !P~$s6%;t !

1(
j

wj~$s
7%→$s1%,t !P~$s7%;t !.

~24!

In the notation of Eqs.~7!, the reactionA1B→S1S is rep-
resented by the probabilitiesw17 andw61, while w71 andw16

correspond to the reactionB1A→S1S. This distinction is
necessary by our assumption that a particle on a sitej can
react only with its right-hand neighborj 11. The explicit
form of the transition probabilities are

wj
165wj

715
k1

4
s j~s j21!s j 11~s j 1111!, ~25!
fo

e
e

03613
wj
175wj

615
k1

4
s j~s j11!s j 11~s j 1121!. ~26!

Again, we will absorb the reaction ratek1 in the dimension-
less time variablet5k1t.

A. Definition of reactive clusters

We are interested in the probability that an,-site cluster is
‘‘fully reactive.’’ In particular, let P,

A(t) be the fraction of
,-site clusters which are entirely filled with reactants in t
configurationABAB•••. Similarly, let P,

B(t) be the fraction
of ,-site clusters with configurationBABA•••. We will
make the distinction between clusters with an even num
of sites and ones with an odd number of sites, althoug
will be shown that this does not have any effect on the fi
results. We have the following definitions:
P,
A(even)~t!5 (

s1561,0
••• (

s i561,0
(

s i 1,11561,0
••• (

sN561,0
P„~s1 , . . . ,s i 1151,s i 12521, . . . ,s i 1,521, . . . ,sN!;t…,

P,
B(even)~t!5 (

s1561,0
••• (

s i561,0
(

s i 1,11561,0
••• (

sN561,0
P„~s1 , . . . ,s i 11521,s i 1251, . . . ,s i 1,51, . . . ,sN!;t….
of

the
use

m-

s to
The definitions for odd-sized clusters are similar to those
even-sized ones, except for the state of lattice sites i 1, ,
which will be 1 for P,

A(odd) and21 for P,
B(odd) . As before,

P1
A(t) is the coverage of the lattice byA particles and like-

wiseP1
B(t) for B particles. We will now derive the evolution

equations for these quantities from Eq.~24!.

B. Dynamics of reactive clusters

The evolution equation forP,
A(t), for , even or odd, is

dP,
A~t!

dt
5 (

j Þ i 11, . . . ,i 1,
(

s j 561,0
@2@wj~$s

1%→$s6%,t!

1wj~$s
1%→$s7%,t!#

3P~$s1%;t!1wj~$s
6%→$s1%,t!P~$s6%;t!

1wj~$s
7%→$s1%,t!P~$s7%;t!#. ~27!

As in Sec. IV A 1, a proper change of variables will cause
cancellation of terms for allj except those belonging to th
subsetj 5 i , . . . ,i 1,. For example, let us have a look at th
third term of the equation,wj ($s

6%→$s1%,t)P($s6%;t). A
change of variable (s j ,s j 11)→(s j12,s j 1111) or, in the
notation of Eqs. ~7! s1→s7, changes it to wj ($s

1%
r

a

→$s7%,t)]P($s1%;t), so that it cancels with the second term
Eq. ~27!. Likewise, a change of variable (s j ,s j 11)→(s j
11,s j 1112) in wj ($s

7%→$s1%,t)P($s7%;t) cancels it
with the first term. Furthermore, we can already note that
contributions of the third and the fourth terms vanish beca
w615w7150 if (s j ,s j 11)5(1,21).

We will now evaluate the contributions for the set, assu
ing translational invariance:

~a! For j 5 i , the contribution of the site reads

C152 (
s i561,0

1

4
s i~s i21!s i 11~s i 1111!

3P~s i ,1,21, . . . ,s i 1,521!

2 (
s i561,0

1

4
s i~s i11!s i 11~s i 1121!

3P~s i ,1,21, . . . ,s i 1,521!.

The second term is clearly zero and the first one reduce
3-7
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FIG. 5. Analytical estimation of the final coverage in~a! A and ~b! B particles, plotted against the initial condition.
tio

n
to
C152 (
s i561,0

1

2
s i~s i21!P~s i ,1,21, . . . ,s i 1,521!

52P~21,1,21, . . . ,21!52P,11
B .

It is easy to see that we get the same result with, odd.
~b! For j 5 i 11, the contribution of the site reads

C252P~s i 1151,s i 12521, . . . ,s i 1,521!

3F1

4
s i 11~s i 1121!s i 12~s i 1211!

1
1

4
s i 11~s i 1111!s i 12~s i 1221!G52P,

A .

It is also clear in this case that we get the same contribu
with , odd.

~c! For j 5 i 1,, the contribution of the site reads, for,
even,

C352 (
s i 1,11561,0

1

4
s i 1,~s i 1,11!s i 1,11

3~s i 1,1121!P~1,21, . . . ,21,s i 1,11!

2 (
s i 1,11561,0

1

4
s i 1,~s i 1,21!s i 1,11

3~s i 1,1111!P~1,21, . . . ,21,s i 1,11!

52 (
s i 1,11561,0

1

2
s i 1,11~s i 1,1111!

3P~1,21, . . . ,21,s i 1,11!52P,11
A .

For , odd, the contribution reads
0361
n

C352 (
s i 1,11561,0

1

4
s i 1,~s i 1,11!s i 1,11

3~s i 1,1121!P~1,21, . . . ,1,s i 1,11!

2 (
s i 1,11561,0

1

4
s i 1,~s i 1,21!s i 1,11

3~s i 1,1111!P~1,21, . . . ,1,s i 1,11!

52 (
s i 1,11561,0

1

2
s i 1,11~s i 1,1111!

3P~1,21, . . . ,1,s i 1,11!52P,11
A .

Once again, there is no difference for the final result.

FIG. 6. Final coverage of the lattice inA particles, plotted
against the initial conditionuA(0) for the two-species desorptio
A1B→S1S. The results displayed in this figure correspond
initial conditionsuA(0)1uB(0)51 @solid line for analytical result
of Eq. ~31!; bullets for simulation results# and uA(0)1uB(0)
50.75 @dotted line for analytical result of Eq.~31!; diamonds for
simulation results#.
33-8
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TABLE I. Asymptotic existence of four-siteA particle clusters and two-siteB particle clusters, analytica
versus numerical results.

Initial conditions Analytical results Numerical simulations

uA uB A4 B2 CA4 CB2

0.3 0.7 1.19231023 3.10931021 1.20031023 3.10331021

0.5 0.5 2.29931022 9.19731022 2.31031022 9.21131022

0.8 0.2 3.14131021 2.69531023 3.14431021 2.75231023
g

r
on

we

d

s
if-
ce

ce
r
an-
For the full subset, we have one contribution of typeC1,
one of typeC3, and (,21) of typeC2. The evolution equa-
tion ~27! then reduces to

dP,
A~t!

dt
52~,21!P,

A2P,11
A 2P,11

B . ~28!

A similar derivation leads to

dP,
B~t!

dt
52~,21!P,

B2P,11
B 2P,11

A . ~29!

Majumdar and Privman@18# solve this system by combinin
the probabilitiesP,

A and P,
B as P,5 1

2 (P,
A1P,

B). This leads
to

dP,~t!

dt
52~,21!P,22P,11 . ~30!

This equation can be solved using the same ansatz as fo
single-species desorption. We get the following expressi
for the coverage of the lattice byA andB particles:

P1
A~t!5

1

2
@P1

A~0!2P1
B~0!1~r1v!e22r(12e2t)

2~r2v!e2r(12e2t)#, ~31!
03613
the
s

P1
B~t!5

1

2
@P1

B~0!2P1
A~0!1~r1v!e22r(12e2t)

2~r2v!e2r(12e2t)#, ~32!

wherev5 1
2 „P1

A(0)1P1
B(0)… andr5AP1

A(0)P1
B(0).

These results are plotted fort→` in Fig. 5. In order to
make comparisons with numerical simulations clearer,
take a section of Fig. 5~a! along initial conditionsP1

A(0)
1P1

B(0)51 and P1
A(0)1P1

B(0)50.75. This is represente
in Fig. 6. As for schemes~1a! and ~1b!, these solutions fit
very well the results of the numerical simulations.

C. Frozen clusters

One of the main features inA1B desorption schemes i
the formation of clusters of homologous particles, when d
fusion is allowed, slowing down the reaction. In the absen
of diffusion, the only such clusters remaining on the latti
are the ones initially present~possibly eaten up on thei
edges!. Below we derive some exact results for these qu
tities, in both the asymptotic and the transient regimes.

We can write the probability that, contiguous sites are
occupied byA or B particles as follows:
me
A,~t!5 (
s1561,0

••• (
s i561,0

(
s i 1,11561,0

••• (
sN561,0

P„~s1 , . . . ,s i 1151, . . . ,s i 1,51, . . . ,sN!;t…,

B,~t!5 (
s1561,0

••• (
s i561,0

(
s i 1,11561,0

••• (
sN561,0

P„~s1 , . . . ,s i 11521, . . . ,s i 1,521, . . . ,sN!;t….

The evolution equation forA,(t) is similar to Eq.~27!, keeping in mind that the cluster is now different. Carrying out the sa
basic operations~change of variables, cancellation and zero contributions!, we get the following evolution equation:
3-9
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dA,~t!

dt
52 (

s i561,0
(

s i 1,11561,0
~wi

161wi
171wi 1,

16 1wi 1,
17 !P~s i ,s i 1151, . . . ,s i 1,51,s i 1,11!

52
1

2 (
s i561,0

s i~s i21!P~s i ,s i 1151, . . . ,s i 1,51!

2
1

2 (
s i 1,11561,0

s i 1,11~s i 1,1121!P~s i 1151, . . . ,s i 1,51,s i 1,11!

52P~s i521,s i 1151, . . . ,s i 1,51!2P~s i 1151, . . . ,s i 1,51,s i 1,11521!.
th

u

to
lo

ed

one
to
in-

ies
o-
ork
ived
ters
the
with
the
the
icles

het-

ic

eri-
eing
ity.
gle-

ng
nk

e
k
p-
We assume that the particles are distributed randomly, so
A,(0)5A1

,(0). We can usethis to factorize the right-hand
terms of the last equation

dA,~t!

dt
52P~s i521,s i 1151!P~s i 1251, . . . ,s i 1,51!

2P~s i 1151, . . . ,s i 1,2151!

3P~s i 1,51,s i 1,11521!.

With translational invariance, this leads to

dA,~t!

dt
52P2

B~t!A,21~0!2A,21~0!P2
A~t!

52A,21~0!„P2
A~t!1P2

B~t!…

5A,21~0!
dP1

A~t!

dt
.

The solution is then easy to compute,

A,~t!5P1
A~t!A,21~0!. ~33!

An identical derivation gives the following result forB clus-
ters:

B,~t!5P1
B~t!B,21~0!. ~34!

Table I shows the solutions of Eqs.~33! and ~34! in the
asymptotic time limit against the results of numerical sim
lations, for various initial conditions.

VI. CONCLUSION

We have developed a simple analytical model for the s
chastic dynamics of three-state reactive schemes on
03613
at

-

-
w-

dimensional support. As this dynamics is implement
through the transition probabilitieswj , the formalism is ap-
plicable to any lattice model, as long as the events affect
or two sites of the lattice. The formalism can be amended
account for reactive systems affecting more sites and/or
volving a higher number of distinct species.

Two different models, stepped desorption and two-spec
desorption, which are two distinct generalizations of the tw
state cooperative desorption presented in a previous w
@10# have been considered here. In each case we der
from the master equation the evolution equations for clus
of particles, which allowed us to compute expressions for
lattice coverage by each species. These expressions fit
great accuracy the results of numerical simulations of
systems considered, both in the asymptotic time limit and
transient regime, as it has been shown in the case of part
in the stepped desorption.

Two-species cooperative desorption arises in many
erogeneous catalysis systems, whereA andB may stand for
the different reactants~e.g., carbon monoxide and atom
oxygen in the CO oxidation reaction on platinum surface!. In
order to be able to compare our models with real exp
ments some features have to be added, the main two b
higher dimensionality of the support and reactant mobil
The latter problem has been adressed recently for sin
species systems@19,20# and it is certainly worth a try to carry
out with the present master equation formalism.
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