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Three-state model for cooperative desorption on a one-dimensional lattice
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We develop a master equation approach to the dynamics of immobile reactants on a one-dimensional lattice,
in the presence of two different species undergoing cooperative desorption. A common feature of all the
schemes studied is the strong dependence of the final coverage on the initial conditions, associated with the
lack of ergodicity of the invariant state. Our approach leads to full agreement with Monte Carlo simulations,
both asymptotically and transiently.
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[. INTRODUCTION cies. A site can now be found in three different states, the
third one being the state of vacancy. Such problems have

Recently, there has been a great deal of interest in phettracted attention in the recent literatifiet—16, the usual
nomena that take place on sets of low dimensionality. Vengapproach being to map them to a quantum mechanical for-
diverse systems, such as interacting spins, random walkgalism. Here we develop an alternative approach based on a
percolation clusters, reactive schemes, and so on, turn out felauber-type master equation.
present here a radically different macroscopic behavior than The particular systems analyzed here are still associated
the one predicted by the mean-figdF) approach. The ori- With cooperative desorption, in two different ways.
gin of the deviations has been successfully identified and Scheme(1a):
appears to depend on both the characteristics of the support
and the nature of the underlying dynamjds-5|. 0 ko

Most of the literature on the effects of dimensionality on A+A—A+P, P—S (1a)
the dynamical behavior of reactive systems focuses on
diffusion-controlled reactions. As the spatial dimension de-

creases, so does the reactants’ mobility, resulting in less ef- Scheme(1b):

ficient transport and a slowing down of the reaction. This

effect can be enhanced if the support is of discrete nature, the ! k2

relevant parameter being then the coordination number of the A+A—P+P, P—S (1b)

lattice, rather than its dimension.

In a series of paperf6—10], the present authors have g refer to these schemes as stepped desorption. They are an
cons_lderr-_:d _the opposite limit where the reactants remain iMsytension of those studied previou§lh0]. The difference is
mobile within the time scale of interest, thereby focusing onyhat here the reaction betweAmarticles produces a product

the reaction dynamics and its role in the global behavior folp that desorbs spontaneously, leaving an emptySite
various types of kinetics. In all the cases studied the embed- gchemg2):

ding in a lattice, with hard core exclusion and short range
reactive interactions, causes a quantitative or qualitative
change from MF behavior. In particular, in the dynamics of
irreversible reactions on a one-dimensional lattiéet A
—A+S and A+A—S+S, referred to cooperative partial
and full desorptior(or, more popularly, coagulation and an- This two-species desorption is known to present very inter-
nihilation) [10], some particles are left on the lattice indefi- esting features when diffusion is allowed. After some time,
nitely, resulting in a nonzero coverage of the lattice in thereactant segregation occurs, slowing down the reaction that
asymptotic time limit, whereas the MF equations predict aonly takes place at the interfaces. The present work will shed
hyperbolic decrease of the coverage. The time evolutiorurther light on these phenomena.
equations for clusters of particles has been derived from a In Sec. I, we describe the MF behavior for the various
Glauber-type master equatiphl], and their solutions lead to schemes, which turns out to be nontrivial for the stepped
analytic expressions for the lattice occupation that are in fuldesorption case. Section Il is devoted to the derivation of an
agreement with the results of numerical simulations. Noteextended Glauber type master equation. This equation is
that the second reaction, whose solution was originally giverused in Secs. IV and V, where a solution for the coverage of
by Flory [12], is equivalent to a random sequential adsorp-the lattice in the case of, respectively, stepped desorption and
tion process(RSA). These systems have since then beenwo-species desorption is computed and found to be in full
given considerable attention, as can be seen in [R&f. agreement with numerical simulations, both asymptotically
In the present paper, we take the problem one step furtheand transiently. Finally, our conclusions are summarized in
by considering reactive schemes involving two different speSec. VI.

kg
A+B—S+S. (2
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Il. MEAN-FIELD DESCRIPTION

In this section we summarize the mean-field results for
the two models introduced above. We first consider scheme

(1a). With a proper dimensionalization, stefka) are de-
scribed by the following rate equations:

dZ(TT) =—-a 7)2, Edz(TT) :63(7)2_ p(T)’
d
€ Z(TT) :p(T)v

where r=Kk;t, e=k;/k,, andk,;=¢,A(0). Theexact solu-
tion can be put in the form

3(7)2—1,
Tt ——

a(0)

1
p(7)=[a(0)+ |o(0)]e”’f——1

a0

1

€
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1
e~ We{r+[1a(O)]} E. I
+ c e ( E T+ a(0)

],.
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s(7)=s(0)+ ;fo p(r)dr".
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p(r)=p(0)e”"“+e z—a(0)%e 7

1
™ a0

2 —321 —2a(0)%e | +0(€%), (4)

’T+m

s(7)=s(0)+p(0)(e”"*—1)

+€| a(0)%e "e— 5| +O(€?).

( 1
_ ™ a(0)

Note that the solution fos(7) is directly integrated from
p(7) equation, which explains its lower order of approxima-
tion. A similar derivation for schemélb) leads to the ap-
proximate solution of ordee?,

1
a(r)=——7-,
2’7’+ m
p(r)=p(0)e "+ 2¢ 2—a(0)%e ¢
27’+ m
+2¢? 1 s—a(0)%e "¢ [ +0(e),
27+ m

®
s(7)=s(0)+p(0)(e”"*—1)

As we can see, it involves the exponential integral function
that does not have an approximate analytical form in the

positive domain. To compute a solution fsf7) in a more
explicit form, we consider the cage<1, or in other words,

a desorption reaction much faster than the alteration reaction,

and apply singular perturbation theory.

The starting point is to seek for a solution in the form of

a power series 0§,

p(¢>=§o p (7)€" (3)

+2¢€| a(0)%e” - 5| +0(€).

27’+m

Figure 1 shows the convergence of these solutions to-
wards the exact one, for both the schemes.

For schem&?2), we do not meet such difficulties and the
solution is found to decrease #s".

IIl. MASTER EQUATION FOR A THREE-STATE MODEL

Tihonov’s theorem asserts that such a solution exists. Then it [N this section we derive a master equation for a general
appears that the actual solution is a linear combination ofYSteém where the processes involved affect at most two sites.

three such series that will always be a uniform approxima

For the sake of simplicity, mainly to prevent any overcount-

tion of the true solution inside and outside the system'dNd, We assume that a two-site event can happen only be-
boundary layer. More details can be found in Secs. 39 and 48V€€n a sitéi and its right-hand neighbar+1. Since we

of Ref.[17]. Keeping terms up to ordes?, one finds

a(n)=——-,
™20

work on a ring, this does not entail any loss of generality.
This kind of formalism was used previously for two-state
problems and proved to be suitable for the study of such
systems[10]. Its generalization to three-state models pro-
ceeds as follows.

We consider a set of spinlike variableso==*1,0 ar-
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FIG. 1. MF behavior fop(r) for the (a) partial and(b) full stepped desorption, with initial conditiorg0)=1, p(0)=0, s(0)=0, for
€=0.1. The approximate solutions of ordersnd €2 clearly converge in both the schemes towards the exact solution.

ranged on the sitgsof a one-dimensional ring. Starting from {04}:(01, oot Lot o),
some arbitrary initial state, the evolution in time of the prob-
ability distribution P({c'};t) is described by the master

equation {o%}=(01,...,00+2041+2,...00),
dP({ot};t !
({(;Tt} ):_; qu w;({o—{o% HP({o};1) (09 =(01, .. 0+ 101142 L),
7
+2 E WJ({Uq}—>{gl},t)p({o_q};t% {oe"}=(0q, ... oi+2,001+1 . 0.

j =2

o)

(6)  The addition on the spin variables in the definition of the
different states is to be understood as an operation in the

where .
cyclic group (—1,0,1). w;({o”}—{o%,t) denotes the tran-
{oY=(0q, ... T Tii1y 0L, sition probability from a statéoP} toa state{ ¥} at timet.
Its value is then either zero or positive.
{62} =(0q, ... O+ 1,041, .00, Consider now thatr; , ; to o;, , are given a certain value
o*, not necessarily the same for each site, and let us sum
{03 =(0q, ... O +2,0511, -+ ,0L), (7) over all the other variables. The result
|
Pt)= 2 - X D X P01 O O o) T) 8)
o1=%*1,0 0i=*100j1041=%*10 on=7%1,0

is the probability of existence of a particular cluster of sizeplicit form of w; appropriate for each scheme and then derive
€. If we assume translational invariance, this probability be-the corresponding hierarchy of equations for clusters of par-
comes the coverage of the chain by such clusters. In thtcles.
particular case =1, we get the fraction of sites of the lat-

tice, which are in a certain state.

Applying these operations to the master equation, one de-

rives a hierarchy of evolution equations for the probabilities The reaction betweeA particles is similar to the two-
P.(t). In the following sections, we will construct the ex- species systems studied previougl@|, and so there should

IV. SCHEME (1): STEPPED DESORPTION
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0.07 - - - ' - - - S shown in Fig. 2. The main question is then whether our
— Simulations . . . .
model will reproduce this transient behavior.

0.06
A. Partial desorption

0.05 We associate speciel, P, and S to the spin statesr

=0,1, and—1, respectively. The two events are thus repre-
sented by the transition probabilitieg ({o'} —{o?},t) and
Wj({cr3}—>{crl},t) in the notation of Eqs(7), all the other
terms of the master equation being zero. The master equation
(6) can thus be reduced to

1n.
D -3 w1 Pio

0.04

o, ]

0.03

0.02f

0.01F

7 & 5 @ w;({o%}—{o1,P{c®t). (9)

FIG. 2. Transient coverage of the lattice B particles in  The transition probabilities take the form
schemeg1a) with e=0.1. The difference between MF behavior and

numerical simulations is due to the proximity conditions imposed 1231 ke 2 ka
on reactions betweeh particles that produce the particles. In the Wi =W _E(UJ —D(oj =D+ EUJ(‘TJ' +1),
asymptotic time limit, there are nB particles left on the lattice. (10)

be no difference between the evolution equations for clustephereks, k; are the rate constants associated to the two
of A particles in two- and three-species models. This allowsteps (18 and we introduced the abbreviated notation
one to test modelés) and(7) on a well-known case. As there Wj({oP}—{o},t)=wP?. From now on, we will absorb the

is no proximity condition on the desorption &f particles, ratek; in the dimensionless time variable=k;t and we
the coverage of the lattice iR particles converges towards define the ratio of the two rates as-k; /k,.

the MF behavior. On the other harfd particles appear from
reactions betweer particles, whose behavior is not MF
like. The transient occupation of the lattice Byparticles is We are interested in the probability thHatontiguous sites
thus different from that predicted by the MF equations, asare occupied by particles:

1. Dynamics of clusters oA particles

P?(T)Z 2 2 E E P((oq, ...,0i:1=0,...,0i+¢=0,... 00);7).
o1=*1,0 0i=*100j;1¢41=*10 on=7%1,0
|
Performing this operation on E¢9), one has vanishes because;(o+2)=0 if c=0. We will now evalu-
ate the nonvanishing contributions for the relevant values of
dP(7) It
dr _j¢i+1 ..... i+0 0 =210 (1) For j=i+1, the contribution of the site reads
1 2 1.
~wie = teh DP(ogi) Ci=—(0fi1=1)(0fp— 1)
. 3 1 3.
+WJ({U t—={o}, P{o7}; 7). 11 XPr(0i+1=0,0,,=0,...,0,,=0)
In the second term of this equation, performing the change of =—P{(n), (12

variableso®= ¢! for the initial state of the transition prob- _

ability implies thato= o2 in the final state, changing this Where we used the notation

term tow;({o'}—{c?}, ") P({c'}; 7). This causes a cancel-

lation of th_e tWO terms _for all, except for thos_e belonging to Pr(Gar . Taip)= | Z P({aP}).
the subsef=i+1,...+¢. Furthermore, since;;=0 for j=+10j#aa+1,...a+h

this subset, the second term of Efj1) is 0. Let us also note

that, in the remaining evolution equation, the second term (2) For j=i+¢, the contribution of the site reads
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o Pr(0i+1=0,....01+¢=0,0i1¢+1)

- =—Pr(01:1=0, ... 011¢+1=0)=— PP, y(7).

ol 1 (13
_o%sp 1 For the full subset, we have one contribution of the type
? C, corresponding to the reaction between site andi
S ofr IS | +¢+1 and{¢— 1 contributions of the typ€, corresponding
Wl e **\«»\# | to reaction between sites+1 and i+2, i+2 andi

' o T +3,...i+€—1 andi+¢. Finally, the evolution equation

ol | (11 reduces to

oost / b dP?(T) A

e =—[(£—1)PN7)+Pp. (7] (14
00 071 0{2 0‘.3 074 075 0{6 077 0{8 079 1
6 ,(0)

This equation is similiar to the one found for direct partial
FIG. 3. Dependence of the global asymptotic coveragéhin desorption[10] and which was solved by Majumdar and
particles on the initial condition. The solid line corresponds to thePrivman[18]. For ¢ =1, the probability represents the cov-
partial desorption and the slashed one to the full desorption. Therage of the lattice byA particles and its solution
bullets and diamonds represent the numerical values given by mi-
croscopic simulations of the partial and full desorptions, respec- P?( T)=(Pf)(’(0)exp[—((f—1)r— P?(O)(l_e_f)]

tively. (15)
Co=— (62, ,—1) (02 11— 1) fits very well the Monte Carlo simulations, as can be seen in
oi4ps1==1,0 Fig. 3.
XPgr(0i;1=0,...,0i+=0,0 _ )
R(Ti1 Oie=00i1e11) 2. Dynamics of clusters oP particles
= 2 - We defineP? as the probability that contiguous sites are
(07111 ¢ P y 9
Oite+1=*10 occupied by homologouR particles,
P?(t): 2 2 2 2 P((O-lv""Ui+1:11'"’O-H—(:l""’a-N);t)'
o1=*1,0 Ui:i1,00i+(+1:i10 oN=*

We will restrict ourselves in the quantiBf , the coverage of o
the lattice inP particles. From the previous equation, we Pi(r)=

[P{i\(o)]aﬂe_(ﬂf)_%\(o)
al
obtain for the evolution oP?,

A —Ta enT A
dpP x| eP1(0)e nZ (n_1)|— eP1(0)
S (ot Deh g DP(ra =000 = POr
S (n—1)! o
—zieai+1<oi+1+1>P<ai+l=1>, X [pop O I HEIPIO)
dPf(7) +PT(0)e 7, (17)

ar PS(7)— =Pi(7). (16)
Since the form oP% 5(7) is known, the evolution equation for wherea=(1—¢€)/e. We compare this expression with the
this quantity reduces to an inhomogeneous differential equaresults of simulations in Fig. 4. To achieve this result, we
tion that can be solved. The result is used the following relation:
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FIG. 4. Transient coverage ¥ particles for scheméla), with e=0.1. (a) shows numerical results while the analytical result given by
Eq. (17) is plotted in(b).

e PA(7) = (P) (0)exd — (£ — 1) 7—2P,(0)(1—e"7)].
exp(be‘t)E n— 1)'— (21)

a
al

b
f explat+be Hdt=

The accuracy of the prediction is quite good, as seen in
Fig. 3. For the coverage of the lattice Byparticles, we get
the following evolution equation:
provideda is a positive integer. Although this limitation is

nonphysical, there is a wide range of values kgrandk,
which satisfy this condition. It does not therefore induce a dP"(7)

. - 1
real loss of generality for our solution. dr

—Ei(be Y|,

=2P% o(7)— —Pl(T) (22

B. Full desorption

This scheme is similar to the previous one with the dif-Whose solution is
ference that twaA particles transform into produciat the
same time. TheP particles desorb as before. The master

equation reduces now to PP( )= [2P7(0)]**? ~(s9-2pN0)
g ) 1(7)= — oal €
P( t
% -2 wi{el)={o* L 0Pt . e X
% ezpl(O)e‘TE (n_l)!m_ezpl(m
1
+; w;({o®}—={a"},OP({a"}1), .
18 2 [2P (O)]nEl(ZP’i\(O)e’T)Jr Ei(2P7(0))
and the transition probabilities take the form + Pf(O)e* e (23

k
14_ .51 2 2

The computations are very similar to those presented for the
partial desorption so we just present the results. We obtain V. SCHEME (2)
for the evolution of a cluster oA particles:

kg
PA(r) We now turn to the reactioA+B— S+ S. We assign the
T A A valueo;=1 to a site occupied by ah particle,o;=—1to a
dr (=P + 2P (], 20 site occupied by & particle, ando;j=0 to a free siteS As
previously, some of the terms of the master equation are
the solution of this equation being zero, leading to

036133-6



THREE-STATE MODEL FOR COOPERATIE . . .

dP({oh:t
%:_; [Wj({a'l}—>{a'6},t)
+w;({o}—={o"},0IP({o'}t)

+ 3wt —{e} 0P

+2j w;({o"t—={o )P({o'}t).
(24)

In the notation of Egs(7), the reactiomM+B— S+ S s rep-
resented by the probabilities'’ andw®?, while w’* andw*®
correspond to the reactidd+ A— S+ S. This distinction is
necessary by our assumption that a particle on ajsiten
react only with its right-hand neighbgr+1. The explicit
form of the transition probabilities are

16 71=ﬁ

;WG (25

oi(oj=1)oj1(oj11+1),

>

0i=*100,¢41=%10 oN=

P?(even)( 7_) — 2

o1=%*1,0

)

0i=*100,¢4,=%10 oN=T

P((Ul, .
1,0

P(((Tl, ..
1,0

PHYSICAL REVIEW E 66, 036133 (2002

17 61_ 1

Again, we will absorb the reaction rakg in the dimension-
less time variabler=Kk;t.

A. Definition of reactive clusters

We are interested in the probability that &site cluster is
“fully reactive.” In particular, let P?(T) be the fraction of
€-site clusters which are entirely filled with reactants in the
configurationABAB- - -. Similarly, letP?(7) be the fraction
of €-site clusters with configuratioBABA:- --. We will
make the distinction between clusters with an even number
of sites and ones with an odd number of sites, although it
will be shown that this does not have any effect on the final
results. We have the following definitions:

Oi1=Lo=—1, ... 0 =—1...00;7),

Oic1=—Lo0=1, ... 0 =1, ... 0N);7).

The definitions for odd-sized clusters are similar to those for—{c"},7)]P({c*};7), so that it cancels with the second term of

even-sized ones, except for the state of lattice site,,
which will be 1 for P29 and—1 for P2(°99 | As before,
P’i\(r) is the coverage of the lattice by particles and like-
wise P'f(r) for B particles. We will now derive the evolution
equations for these quantities from Eg4).

B. Dynamics of reactive clusters

The evolution equation foP?(r), for € even or odd, is

dPi(7) _

d 2 [_[Wj({gl}_){a-e}v'r)
T i=*1,0

j#Ei+L, L i+€ oj==
+w({o'}—={o"},7)]

XP({a'}; ) +w({o®%—{a'}, HP{0%;7)
+w({o}={o'}, DP({o"}; ] (27

As in Sec. IV A 1, a proper change of variables will cause a
cancellation of terms for afl except those belonging to the
subset =i, ... ,i+{. For example, let us have a look at the

third term of the equationy;({o®}—{o'},7)P({c®};7). A
change of variabled;,oj1)—(oj+2,0i:,+1) or, in the
notation of Egs.(7) o'—o’, changes it tow;({c"}

Eqg. (27). Likewise, a change of variables(,o,1)— (0o
+1,0):1+2) in wj({o"}—={a"},7)P({c};7) cancels it
with the first term. Furthermore, we can already note that the
contributions of the third and the fourth terms vanish because
wil=w=0 if (o},0j.1)=(1,—1).

We will now evaluate the contributions for the set, assum-
ing translational invariance:

(a) For j=i, the contribution of the site reads

1
Ci=— P23 ZUi(Ui—l)Ui+1(<Ti+1+1)

XP(O’i ,1,_1, P !O-H—(’:_l)

1
- _;lOZUi(Ui+l)Ui+l(Ui+l_l)

XP(O’i ,1,_1, P !O-H—(’:_l)'

The second term is clearly zero and the first one reduces to
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FIG. 5. Analytical estimation of the final coverage(a A and(b) B particles, plotted against the initial condition.

1 1
Ci=— 2, EUi(Ui_l)P(Uiyly—l,---,in:_l) Ci=— X Za'i+((0'i+{/+1)0'i+{’+1
oi=%1,0 Tite+1=*+10
=-P(-11-1,...,~1)=—PP,,. X041~ DP(L,=1, ... 10404 )
1
It is easy to see that we get the same result Withdd. - E Z(Ti+(g(0i+(;_ Doiiein
(b) For j=i+1, the contribution of the site reads Ti+e+1= =10
X(Oire+1tDP(L,=1, ..., 104 041)

CZZ_P(Ui+1:1!Ui+2:_11"'10-i+((:_1) 1
=- 50i+e+1(Tiver2t1)
Tire+1=%10

1
X Za'i+1(0'i+1_1)("i+2(0'i+2+1)
XP(1,-1,... :10i+e+1):—P?+1.

1 _ . . )
+10'i+1(0'i+1+ Doiio(oi—1)|=—PF. Once again, there is no difference for the final result.
t T T T T T T T T T
It is also clear in this case that we get the same contribution )l
with € odd. o8| -
(c) For j=i+¢, the contribution of the site reads, fér | i
even, 0 ¥
1 0 V4 -
1 0 e '
<
Ci=— X T+ e(Tir et 1) ot en ® 0al -
oiseir-+104 o
X(oj4 1~ DP(L,=1, ..., =107 ¢+1) 02l /,"/ 4
1 L /,0/ |
- X Zo'i+€(0'i+€_1)0'i+€+l P r i
o4 +1=*1,0 % 02 04 06 038 1
X (0 1+ DP(L=1, ... =107, 041) 040)
1 FIG. 6. Final coverage of the lattice iA particles, plotted
=- E EUi+€+1(0'i+(’+l+ 1) against the initial conditiorg,(0) for the two-species desorption
Ot e+1=*1,

A+B—S+S. The results displayed in this figure correspond to
initial conditions #,(0)+ #z(0)=1 [solid line for analytical result

— — : —_pA
XP(L=1... .= 1ot eed) P of Eg. (31); bullets for simulation resultsand 6,(0)+ 6g(0)
=0.75[dotted line for analytical result of Eq31); diamonds for
For ¢ odd, the contribution reads simulation results
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TABLE I. Asymptotic existence of four-sité particle clusters and two-si® particle clusters, analytical

versus numerical results.

Initial conditions

Analytical results

Numerical simulations

Oa 0g Ay B, Cha Ce2

0.3 0.7 1.19%x10°3 3.109<10* 1.200< 103 3.103x 107!
0.5 0.5 2.29%10 2 9.197x 10 2 2.310<10 2 9.211x 10?2
0.8 0.2 3.14x10°* 2.695x< 103 3.144x10°* 2.752x10°3

For the full subset, we have one contribution of typg
one of typeCs, and (¢ —1) of typeC,. The evolution equa-
tion (27) then reduces to

dPp(7)

dr :_(6_1)P?_P?+1_P?+1- (28
A similar derivation leads to

dPZ(7)

dr :_(6_1)P?_P(B+1_P?+1- (29

Majumdar and Privmafl8] solve this system by combining
the probabilitiesP? and P? asP,=%(P{+ P2). This leads
to
dP(7)
dr

=—(—1P;=2P¢,;. (30

1 T
P?( 7)= E[P?(O)_ P?(O)-ﬁ-(p—i— w)e 2r(l-e )

_(p_w)eZP(l—efT)], (32)

wherew=1(P(0)+ P2(0)) and p=/PF(0)PE(0).

These results are plotted fer—« in Fig. 5. In order to
make comparisons with numerical simulations clearer, we
take a section of Fig. (8) along initial conditionsP7(0)
+P20)=1 andP%(0)+ P}(0)=0.75. This is represented
in Fig. 6. As for schemes$la) and (1b), these solutions fit
very well the results of the numerical simulations.

C. Frozen clusters

One of the main features iA+ B desorption schemes is

This equation can be solved using the same ansatz as for tige formation of clusters of homologous particles, when dif-
single-species desorption. We get the following expression8ision is allowed, slowing down the reaction. In the absence

for the coverage of the lattice b4 and B particles:
A 1 A B —2p(1—-e™7)
P1(7)=5[P1(0)=P1(0)+(p+w)e

_(p_w)eZP(l*e_f)], (3D

Aln)= 2 SR

o1==* 0i=*100j4¢4+1=%10

Bin)= X

o1=*1,0 0i=*100i,¢41=%10 oN=T

P(((Tl, -
0

on=*1

P((Ul, .
1,0

of diffusion, the only such clusters remaining on the lattice
are the ones initially presenipossibly eaten up on their
edges. Below we derive some exact results for these quan-
tities, in both the asymptotic and the transient regimes.

We can write the probability that contiguous sites are
occupied byA or B particles as follows:

o1 =1, . 0= on)it),

1,....00);0).

. 10—i+l:_11 e O =

The evolution equation fok,(7) is similar to Eq.(27), keeping in mind that the cluster is now different. Carrying out the same
basic operationgchange of variables, cancellation and zero contribujione get the following evolution equation:
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dA(7)

dr :_2

0i=*100j4¢41=*10

(W w T+ Wi +w )P(oi,0i:0=1, ... i+ =107+ ¢11)
OUi(Ui—l)P(Ui 0i+1=1 o4 =1)

_E E Oiie41(Oiper1—DP(oi1=1, ... 0= 101 1¢41)
Oiter1=*10

=—Ploi=-10i+1=1,... 01+ (=1~ P(oi1=1, ... 014 (=10i4 1=~ 1).

We assume that the particles are distributed randomly, so thaimensional support. As this dynamics is implemented
Ag(O):Ag(O)_ We can usehis to factorize the right-hand through the transition probabilities; , the formalism is ap-

terms of the last equation

dAg(7)
dr

_P(a-i+1:11 . 10—i+€*l:1)
XP(oi+¢=107+¢+1=—1).

With translational invariance, this leads to

dA
;Sﬁ=—P?ﬂApﬂm—Awﬂmpy”
= —A¢_1(0)(P5(7)+P3(7))
dP(7)
=A571(O)d;7.7-'

The solution is then easy to compute,

Al(1)=P(1)A;_1(0).

An identical derivation gives the following result f& clus-

ters:

By(7)=PZ(7)B,_1(0).

Table | shows the solutions of Eq&33) and (34) in the

=—P(oi=—10i;1=1)P(0i;,=1,... 011 (=1)

plicable to any lattice model, as long as the events affect one
or two sites of the lattice. The formalism can be amended to
account for reactive systems affecting more sites and/or in-
volving a higher number of distinct species.

Two different models, stepped desorption and two-species
desorption, which are two distinct generalizations of the two-
state cooperative desorption presented in a previous work
[10] have been considered here. In each case we derived
from the master equation the evolution equations for clusters
of particles, which allowed us to compute expressions for the
lattice coverage by each species. These expressions fit with
great accuracy the results of numerical simulations of the
systems considered, both in the asymptotic time limit and the
transient regime, as it has been shown in the case of particles
in the stepped desorption.

Two-species cooperative desorption arises in many het-
erogeneous catalysis systems, wh&rand B may stand for
the different reactantge.g., carbon monoxide and atomic
oxygen in the CO oxidation reaction on platinum surjate
order to be able to compare our models with real experi-
(33 ments some features have to be added, the main two being
higher dimensionality of the support and reactant mobility.
The latter problem has been adressed recently for single-
species systen}49,2( and it is certainly worth a try to carry
(34) out with the present master equation formalism.
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